机器

Python机器学习算法 PDF_Python教程

资源名称: 机器学习算法 内容简介: 《 机器学习算法》是一本机器学习入门读物,注重理论与实践的结合。全书主要包括 个部分,每个部分均以典型的机器学习算法为例,从算法原理出发,由浅入深,详细介绍算法的理论,并配合目前流行的 语言,从零开始,实现每一个算法,以加强对机器学习算法理论的理解、增强实际的算法实践能力,最终达到熟练掌握每一个算法的目的。与其他机器学习类图书相比,《 机器学习算法》同时包含算法理论的介绍和算法的实践,以理论支撑实践,同时,又将复杂、枯燥的理论用简单易懂的形式表达出来,促进对理论的理解

Python机器学习 预测分析核心算法 中文pdf_Python教程

资源名称: 机器学习 预测分析核心算法 中文 第 章 关于预测的两类核心 第 章 通过理解数据来了解 第 章 预测模型的构建:平衡性 第 章 惩罚线性回归模型第 章 使用惩罚线性方法来 第 章 集成方法第 章 用 构建集成 资源截图:

Python机器学习 PDF_Python教程

资源名称: 机器学习 作者简介: 是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客 评为 上具影响力的数据科学家。他有一整年都使用 进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为 在数据科学、机器学习以及 等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如 等)中。在业余时间,他沉醉于构建体育运

数据挖掘实用机器学习技术(中文第二版)_数据库教程

资源名称:数据挖掘实用机器学习技术 中文第二版 内容简介: 《数据挖掘实用机器学习技术 原书第 版 》介绍数据挖掘的基本理论与实践方法。主要内容包括:各种模型 决策树、关联规则、线性模型、聚类、贝叶斯网以及神经网络 以及在实践中的运用,所存在缺陷的分析。安全地清理数据集、建立以及评估模型的预测质量的方法,并且提供了一个公开的数据挖掘工作平台 。 系统拥有进行数据挖掘任务的图形用户界面,有助于理解模型,是一个实用并且深受欢迎的工具。 资源截图:

数字图像处理与机器视觉:Visual C++与Matlab实现_NET教程

资源名称:数字图像处理与机器视觉: 与 实现 《数字图像处理与机器视觉: 与 实现》将理论知识、科学研究和工程实践有机结合起来,介绍了数字图像处理和识别技术的方方面面,内容包括图像的点运算、几何变换、空域和频域滤波、图像复原、形态学处理、图像分割以及图像特征提取。《数字图像处理与机器视觉: 与 实现》还对于机器视觉进行了前导性的探究,重点介绍了两种在工程技术领域非常流行的分类技术 人工神经网络 和支持向量机 ,并在配套给出的识别案例中直击光学字符识别 和人脸识别两大热点问题。 全书结构紧凑,内容深入浅出,

Python机器学习——预测分析核心算法_Python教程

资源名称: 机器学习 预测分析核心算法 内容简介: 在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知 所措。本书从算法和 语言实现的角度,帮助读者认识机器学习。 书专注于两类核心的 算法族 ,即惩罚线性回归和集成方法,并通过代码实例来 展示所讨论的算法的使用原则。全书共分为 章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。 本书主要针对想提高机器学习技能的 开发人员,帮助他们解决某一特定的项 目或是提升相关的技能。 作者简介: 在硅谷

机器学习 (周志华 著) 学习笔记 中文完整高清版_Python教程

资源名称:机器学习 周志华 著 学习笔记 中文完整高清版 第 章 引言 基本术 假设空间 归纳偏好 发展历程 应用现状 阅读材料 习题 参考文献 休息一会儿 第 章 模型评估与选择 经验误差与过拟合 评估方法 留出法 交叉验证法 自助法 调参与最终模型 性能度量 错误率与精度 查准率、查全率与 与 代价敏感错误率与代价曲线 比较检验 假设检验 交叉验证 检验 检验 检验与后续检验 偏差与方差 阅读材料 习题 参考文献 休息一会儿 第 章 线性模型 基本形式 线性回归 对数几率回归 线性判别分析 多分类学习

Python+Spark 2.0+Hadoop机器学习与大数据实战

资源名称: 机器学习与大数据实战 内容简介: 本书从浅显易懂的 大数据和机器学习 原理说明入手,讲述大数据和机器学习的基本概念,如分类、分析、训练、建模、预测、机器学习(推荐引擎)、机器学习(二元分类)、机器学习(多元分类)、机器学习(回归分析)和数据可视化应用等。书中不仅加入了新近的大数据技术,还丰富了 机器学习 内容。 为降低读者学习大数据技术的门槛,书中提供了丰富的上机实践操作和范例程序详解,展示了如何在单机 系统上通过 虚拟机安装多机 虚拟机,如何建立 集群,再建立 开发环境。书中介绍搭建的上机实